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GEOMETRIC PROPERTIES OF THE ICOSAHEDRAL-HEXAGONAL
GRID ON THE TWO-SPHERE∗
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Abstract. An icosahedral-hexagonal grid on the two-sphere is created by dividing the faces of
an icosahedron and projecting the vertices onto the sphere. This grid and its Voronoi tessellation
have several desirable features for numerical simulations of physical processes on the sphere. While
several methods to construct the icosahedral grid mesh have been proposed over the past decades, and
empirical data have been collected to understand and help improve the grid, rarely have analytical
analyses been done to investigate the basic geometric properties of the grid. In this paper, we
present an analytical analysis of several geometric properties of the icosahedral grids based on two
basic constructions: recursive and nonrecursive construction. We point out that these geometric
properties can be improved with modified construction procedures. We demonstrate how these
improvements impact the numerical integration of PDEs over the sphere.
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1. Introduction. An icosahedral-hexagonal grid on the two-sphere is created
by dividing the faces of an icosahedron (which are 20 congruent equilateral plane tri-
angles) into a triangle mesh and projecting the vertices of the mesh onto the surface of
the enclosing sphere. Its relevant topology includes a mesh of triangles and hexagonal
Voronoi cells (and 12 pentagonal ones) that provide a unique set of geometric proper-
ties suitable for numerical simulations on the sphere. Among all regular polyhedrons,
the icosahedron distributes the 4π angular defect (Gauss–Bonnet theorem) evenly
over the most number of vertices, minimizing the distortion of the spherical triangles
near these vertices. In addition, an icosahedral grid partitions the sphere into 20
equilaterals, which naturally leads to 10 rhombuses that can be further decomposed
conveniently for massive parallel computing. Due to these desirable geometric and
topological features, several discretization schemes have been developed based on the
icosahedral-hexagonal grid for global circulation models ([1, 9, 8, 6, 16], for example).

Figure 1.1 shows 20 initial equilateral plane triangles that can be combined into
an icosahedron.

There are two basic constructions for this grid: one is recursive and one nonre-
cursive. We will describe both constructions in detail in the following sections. In
general, the grid points created from either construction are rather uniform. However,
we know that for more than 12 grid points it is impossible to create a perfect grid
mesh on the sphere, which requires equal distance between any adjacent grid points.
Therefore, there is a need to specify some measures of grid regularity and to optimize
these measures during the construction process. Several criteria have been suggested,
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GEOMETRIC PROPERTIES OF THE ICOSAHEDRAL GRID 2537

Fig. 1.1. Initial 20 equilateral plane triangles that form the regular icosahedron.

and corresponding iterative procedures have been proposed [17, 3] to optimize the
grid. However, little has been done to analytically study the geometric properties
of the grid and to demonstrate the impact of these optimizations on the grid geo-
metrically. The purpose of this study is to analytically investigate the structure of
the icosahedral grid, providing geometric insight into the grid to help improve the
numerical qualities of the grid for various applications.

There are two key parameters that are most important to a spherical grid. The
first is the regularity of the triangle mesh and its corresponding Voronoi cell mesh.
It directly affects the truncation error of the numeric computation performed on it
[3, 17]. The bound of the regularity may be measured with the maximum ratio between
the longest and the shortest side of any spherical triangle in the triangle mesh. The
overall regularity of the grid may be measured by the variance of the Voronoi cell
edges or that of the grid point spacing. The second parameter is the uniformity of the
triangle mesh, which is commonly measured by the ratio of the longest and shortest
distances between any adjacent grid points. This parameter determines the size of
the time step for numerical integration of time-dependent hyperbolic equations. It is
especially important when a high resolution grid is used and computational efficiency
becomes a critical factor.

In their survey paper [10], Miura and Kimoto summarized several iterative opti-
mization methods. They identified the following five measures that are important to
the accuracy of the numerical computation on an icosahedral grid: (i) “collocation”
(of the centroids and generators of the Voronoi cells); (ii) “orthogonality”; (iii) “bisec-
tion” (conditions for Voronoi cell edges and connections between corresponding grid
points); (iv) “isotropy”; and (v) “area uniformity” (of the Voronoi cells). We realize
that measures (i)–(iv) are all directly connected to the grid regularity parameter, mea-
sure (ii) is always maintained if we do not relocate the generators, and measure (v)
is directly related to the ratio of the longest and shortest distances between adjacent
grid points. We believe that the two parameters we proposed above are key measures
of the grid quality.

It appears that the two key parameters may not simultaneously achieve their opti-
mality. Some compromises have to be made to create a grid that best fits one’s partic-
ular numerical computation goals. Iterative methods tend to optimize one particular
parameter; however, they lack the flexibility for achieving a desired compromise.

In this paper, we analytically determine some key geometric properties of the
icosahedral grid that are related to the above parameters. Using these geometric
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2538 NING WANG AND JIN-LUEN LEE

properties, we determine how skewed and uneven these grids become as their resolu-
tion goes to infinity. At the same time, these properties help reveal the weaknesses of
the icosahedral grids created from the two basic constructions and find modifications
to the constructions that create improved grids for numerical applications.

This article is organized as follows. In section 2, we introduce the basic proce-
dures used to create the icosahedral grid and some notation for the following sections.
Section 3 studies the geometric properties of the grid, providing details of the analysis
and presenting the analysis results. From these results, we propose two modifications
for recursive and nonrecursive construction, respectively, in section 4. In section 5,
we present the numerical results from a shallow water model integration over the
modified grids and compare them to the same numerical computation over the grid
from the basic construction. We conclude the article with some remarks about grid
generation on the two-sphere.

2. Construction of the icosahedral grid. There are two basic ways to con-
struct an icosahedral grid: recursive construction and nonrecursive construction. Re-
cursive construction bisects, projects, and subdivides the initial 20 plane equilateral
triangles and repeats the procedure on the subdivided plane triangles recursively to
create a grid of desired resolution. It is the construction most researchers use at the
present time. The nonrecursive construction subdivides the 20 initial plane equilat-
eral triangles, then projects the intersection points onto the surface of the sphere.
Sadourny. Arakawa, and Mintz proposed a nonrecursive construction when they in-
troduced their icosahedral grid [13]. Recently, Steppeler et al. proposed a new nonre-
cursive construction based on dividing a bilinear surface of two adjacent initial plane
triangles [14]. Here, we present a slightly different, simple algorithm as our baseline
for nonrecursive construction. The nonrecursive construction is a less widely used
way to create icosahedral grids; however, this construction produces some desirable
geometric properties that could be useful for some numerical applications.

Since all 20 initial plane triangles are congruent, and the subdivision procedures
applied to them are exactly the same (except for locally nested or stretched grids
which are not dealt with in this article), we can always focus on one such triangle
during our descriptions for grid construction, analysis, and proposed modifications. In
the following, triangles defined in the three-dimensional ambient Euclidean space are
referred to as plane triangles, and triangles defined on the two-sphere are referred to
as spherical triangles, or triangles when the context of reference is clear. The Voronoi
cells are always defined on the two-sphere.

2.1. Recursive approach. This approach starts with 12 grid points that are
evenly distributed on the sphere, with the exact same distance between any adjacent
points. Connecting these grid points, we get 20 initial equilateral plane triangles which
make up an icosahedron. As one recursively bisects each plane triangle, projects the
bisecting points to the sphere, and connects the projected bisecting points to create
new triangles, new grid points are added into the grid mesh. The construction is
completed when the average (or maximum) distance between adjacent grid points
reaches the desired value. The level of recursion is usually called “grid refinement
level,” or “grid level.” The bisection refinement can be equivalently done by bisecting
the spherical triangle and connecting the bisecting points with great circles.

For the ease of description, we use the following names and notation. We call the
20 congruent spherical equilateral triangles the initial triangles, or triangles at level
0, and we call these 12 initial evenly spaced grid points the initial vertices, or vertices
at level 0. Grid level i refers to the resolution level of the grid after the ith bisection
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Fig. 2.1. Recursively bisected equilateral triangle in two levels, letters E, I, and G representing
spherical equilateral, isosceles, and general triangles, respectively.

refinement. We always work on the unit sphere, with all angles and arc lengths in
radians.

It is easy to verify that each initial equilateral triangle has a side length of
2 cos−1 (1/2 · csc π

5 ), angle of 2π/5, and area of π/5.
The triangle mesh is symmetric with respect to the center of the initial triangle.

The triangles at grid level i (i > 0) are generally noncongruent. From basic spheri-
cal geometry, we have the following patterns. Bisecting and subdividing a spherical
equilateral triangle, one will get three spherical isosceles and one spherical equilateral
triangle. Bisecting and subdividing a spherical isosceles triangle, one will get two
spherical isosceles triangles and two general spherical triangles. Therefore it is trivial
to derive the following results. Letting En, In, and Gn denote the number of spherical
equilateral, isosceles, and general triangles at grid level n, we have

E0 = 20, I0 = 0, G0 = G1 = 0,

En = En−1, n > 0,

In = In−1 · 2 + En−1 · 3, n > 0,

Gn = Gn−1 · 4 + In−1 · 2, n > 1.

Or, we have

E0 = 20, I0 = 0, G0 = G1 = 0,

En = 20,

In = 60(2n − 1), n > 0,

Gn = 40(2 · 4n−1 − 3 · 2n−1 + 1), n > 1.

Figure 2.1 shows an initial triangle at level 2 refinement, with letters E, I, and
G representing equilateral, isosceles, and general triangles, respectively.

These spherical triangles generally differ in size and side ratios. The ratio between
the longest and shortest sides in the triangle mesh increases with the grid level n, and
it converges to about 1.195114. Details are discussed in the next section.

The Voronoi cell mesh can be viewed as a complementary mesh to the triangle
mesh. There are 10 · 22n + 2 grid points, and thus the same number of Voronoi cells.
Since the ratio bound of the longest and shortest Voronoi cell edges does not approach
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2540 NING WANG AND JIN-LUEN LEE

Fig. 2.2. Nonrecursive construction, each side of the initial equilateral triangle divided into
seven equal sections.

infinity, there are no degenerate spherical pentagons or hexagons. Thus, there are 12
spherical pentagons and 10 · 22n − 10 hexagons. Let νn and μn denote the number of
vertices and edges of this mesh. It is straightforward to calculate that

νn =
5 · 12 + 6 · (10 · 22n − 10)

3
= 20 · 22n,

μn =
5 · 12 + 6 · (10 · 22n − 10)

2
= 30 · 22n.

Recursive construction offers some desirable geometric properties. It provides a
good ratio of the longest and shortest distances between adjacent grid points. With
a modified construction proposed in section 4, this ratio can be improved to be close
to optimality.

The main weakness of this construction is that during the recursive refinements,
many local minimum and maximum triangles are created. As a result, in the area
near the vertices of the triangles of the first two or three refinements, there are many
“skewed” triangles and Voronoi cells.

2.2. Nonrecursive approach. Another basic construction method is nonrecur-
sive. Starting from 12 equally distributed grid points on the sphere, we create 20 plane
equilateral triangles. We divide each plane equilateral triangle into a desired number
of equilateral triangles, then project the intersections points to the unit sphere (see
Figure 2.2).

It is natural and reasonable to divide the plane equilateral triangle into a number
of small plane equilateral triangles of the same size. We partition all three sides into
m equal sections and connect the corresponding partitioning points on each side with
straight lines to create a refined plane triangle mesh.

The distribution of the spherical equilateral, isosceles, and general triangles within
the initial spherical triangular areas is similar but not identical to the recursive con-
struction. We do not have a simple formula as above. However, it is easy to identify
the pattern: any triangle whose sides are part of the three (two) great circles of the
same length is an equilateral (isosceles) triangle; the rest are general triangles. The
analysis of the Voronoi cell mesh and its edges and vertices is the same as that of the
recursive construction. We just replace 22n in the formula with m2.
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GEOMETRIC PROPERTIES OF THE ICOSAHEDRAL GRID 2541

The major advantage of this construction is that all grid points within an initial
spherical triangle are lined up on great circles. The other advantage of this construc-
tion is that we are no longer constrained by dyadic refinement that can only double
the distance resolution (quadruple the point resolution). We can create a grid that is
closer to the desired target resolution.

The major disadvantage of this construction is that the adjacent grid points along
the sides of the initial spherical equilateral triangles are no longer equidistant. As a
result, the shortest distance between adjacent grid points is shorter than that of the
recursively constructed grid. Therefore, the ratio between the longest and shortest
distances of adjacent grid points will be greater compared to the recursive approach.

Icosahedral-hexagonal grid mesh created with either construction follows the same
overall trend: the regularity and size of the triangles and hexagons increase as these
polygons get closer to the center of the initial equilateral triangles. This trend is
caused by two facts of the icosahedral grid: the topological change of the Voronoi cell
mesh from pentagons to hexagons at the initial vertices, and the different distances
from the vertices and centers of the initial plane triangles to the sphere. More detailed
and rigorous descriptions are presented in the next section.

For both constructions, the two key parameters we introduced earlier increase
as the grid level n increases. Fortunately, as we will see in the next section, these
parameters converge quickly to constant bounds.

3. Analysis of the geometric bounds of the icosahedral grid. In this
section, we derive several geometric bounds of the icosahedral grid for both recursive
and nonrecursive constructions. The first is the upper bound of the maximum ratio
of the distances between the vertices of any single triangle in the triangle mesh; the
second is the upper bound of the maximum ratio of the distances between adjacent
grid points. From these two bounds, we derive a few other bounds that are of interest.

In the following, �(XY Z) denotes the spherical triangle XYZ on the unit sphere,
and X and x denote the vertex/angle and corresponding arc length of the spherical
triangle, respectively. R∗ denotes the ratio bound.

3.1. The bound of the maximum ratio of the distances between the
vertices of any single triangle in the grid mesh. First we show the bound for
the icosahedral grid created with the recursive construction. We start with a few
geometric propositions.

Proposition 3.1. Let �(ABC) be an acute spherical triangle, let a, b, and c
be its corresponding sides, and let a1, b1, and c1 be the sides of the inner spherical
triangle after one bisection subdivision. If a ≥ b ≥ c, then a1 ≥ b1 ≥ c1, and specif-
ically, cos a1/cos b1 = cos a

2/cos
b
2 , cos a1/cos c1 = cos a

2/cos
c
2 , and cos b1/cos c1 =

cos b
2/cos

c
2 .

Proof. Let X denote the unit vector OX, where O is the origin of the three-
dimensional ambient space and X is a vertex of a spherical triangle. With reference
to Figure 3.1, we have

cos a1 = D ·E = ((A+B) · (A+C))η1 = (A ·A+A ·C+B ·A+B ·C)η1

= (1 + cos b + cos c+ cos a)η1,

where η1 = (4 cos c
2 cos

b
2 )

−1. Similarly,

cos b1 = (cos c+ cos b + 1 + cos a)η2,

cos c1 = (cos c+ cos b + cos a+ 1)η3,
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Fig. 3.1. Recursive bisection of an acute spherical triangle. ai, bi, and ei are great circle arcs
that connect the bisecting points at different refinement levels.

and η2 = (4 cos c
2 cos

a
2 )

−1, η3 = (4 cos b
2 cos

a
2 )

−1. Observing η1 ≤ η2 ≤ η3 and
dividing between the equations, we obtain the proposition.

Proposition 3.1 gives the quantitative relationship between the side lengths of
the inner triangle after one bisection refinement. Now we establish the quantitative
relationship between the lengths of the sides corresponding to the largest angles in
each of the three noncenter triangles after i bisection refinements.

Proposition 3.2. Let �(ABC) be an acute spherical triangle, and D, E, and
F be the bisection points of the triangle sides. Let ai, xi, and yi be the triangle
sides corresponding to the largest angles of the subtriangles �(ADE), �(DBF ), and
�(EFC) at the ith bisection refinement. If a ≥ b ≥ c and a < π/2, then ai ≥ xi, ai ≥
yi, i = 1, 2, . . . .

Proof. Let b1 ≥ a/2 and a/2 ≥ c1. We show that ai ≥ bi and ai ≥ ei, i =
1, 2, 3, . . . . Applying Proposition 3.1 to the triangles at vertices A and B after k + 1
refinements, and letting ζ(x, k) denote cos (x/2k), we have

cosak+1 =
(
1 + ζ(b, k) + ζ(c, k) + cos ak

)1
4
ζ(c, k + 1)−1ζ(b, k + 1)−1,

cos bk+1 =
(
1 + ζ(a, k) + ζ(c, k) + cos bk

)1
4
ζ(c, k + 1)−1ζ(a, k + 1)−1.

It follows that

(3.1)

cos bk+1 − cos ak+1 =
1

2
ζ(c, k + 1)−1

(
ζ(a, k + 1)− ζ(b, k + 1)

)
+

1

4
ζ(c, k + 1)−1

(
ζ(c, k) + cos ak

)(
ζ(a, k + 1)−1− ζ(b, k + 1)−1

)
+

1

4
ζ(c, k + 1)−1

(
cos bk − cos ak

)
ζ(a, k + 1)−1.

Note that since cos ak < ζ(a, k), a < π/2, and a ≥ b ≥ c,(
ζ(c, k) + cos ak

)
ζ(a, k + 1)−1ζ(b, k + 1)−1 ≤

(
1 + ζ(a, k)

)
ζ(a, k + 1)−1ζ(b, k + 1)−1

= 2ζ(a, k + 1)ζ(b, k + 1)−1 ≤ 2,
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implying that the sum of the first and second terms of the right-hand side of (3.1) is
less than or equal to 0. We also note that for k ≥ 1 and a ≤ π/2, 14ζ(c, k+1)−1ζ(a, k+
1)−1 < 1. Thus, we have

cos bk+1 − cos ak+1 ≤ cos bk − cos ak.

The equality holds when ai = bi, i = 1, 2, 3, . . . , or

cos bk+1 − cos bk ≤ cos ak+1 − cos ak.

That is, sequence {cosai} grows faster than {cos bi}. On the other hand, we note that
cos a1 ≤ cos b1 (Proposition 3.1), and both sequences {cosai} and {cos bi} converge
monotonically to one. Therefore, we have cos bi ≥ cos ai, or ai ≥ bi (i = 1, 2, 3, . . .).
Similarly, we can show ai ≥ ei.

For the case that b1 ≤ a/2, or a/2 ≤ c1, the proof can also be obtained accor-
dingly.

Proposition 3.3. Let �(ABC) be an arbitrary acute spherical triangle, a ≥ b ≥
c. After any number of recursive bisection refinements, the spherical triangle in the
triangle mesh with one vertex at A has the greatest side ratio.

Proof. Now we argue that as we recursively bisect sides to create a finer triangle
mesh within�(ABC), ai/(c/2

i) remains to be the maximum ratio among all triangles.
From Proposition 3.1, we know that the inner triangle �(DEF ) has a smaller side ra-
tio and area compared to �(ABC); thus it can be excluded from further examination.
Starting with spherical triangle �(ABC) after one bisection refinement (Figure 3.1),
we perform one bisection refinement on each of the three noncenter subtriangles of
�(ABC) and apply Proposition 3.2 to the triangle �(ABC). We get a2 ≥ b2 and
a2 ≥ e2. After one more recursive bisection refinement, we apply Proposition 3.2 to
the subtriangles �(ADE), �(DBF ), and �(EFC). We get a3, b3, and e3 as the
longest sides of the three respective subtriangles. On the other hand, we know from
the application of the same proposition to �(ABC) that a3 ≥ b3 and a3 ≥ e3; thus a3
is the longest side among all subtriangles in �(ABC) that could possibly have larger
side ratios. Carrying out the above two steps recursively to subtriangles, and noting
c/2i to be the shortest side for all triangles in the triangle mesh after i refinements,
we obtain the desired result.

Since each initial spherical equilateral triangle is acute and its side lengths are less
than π/2, and since largest angles of three noncenter subtriangles of the equilateral
triangle are the angles at the initial vertices, from Proposition 3.3 we can conclude
that the isosceles triangles with their top vertices being the initial vertices have the
maximum side ratio.

For nonrecursive construction, we show in the following Proposition that the
above claim is also true.

Proposition 3.4. In the triangle mesh created with nonrecursive construction,
the isosceles triangles at the vertices of the initial equilateral triangles have the largest
and smallest angles.

Proof. First we find the relations between the sizes of the lower left angles in
the triangle mesh (Figure 3.2). Let Bij denote the lower left angle at vertex (i, j),
where the ith and the jth great circles, which divide the initial equilateral triangle,
intersect. It is straightforward to verify that Bij > Bij+1. Let us construct two
isosceles triangles with one shared top angle and Bij and Bij+1 as the base angles of
the larger and smaller isosceles triangles, respectively (in Figure 3.2, triangles with
thick lines). Apparently, the inequality holds. Similarly, we can show Bij > Bi+1j .

D
ow

nl
oa

de
d 

05
/0

8/
15

 to
 1

40
.1

72
.2

53
.1

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2544 NING WANG AND JIN-LUEN LEE
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Fig. 3.2. A triangle mesh created with nonrecursive construction, illustrating relations between
angles. Bij denotes the lower left angle of the triangle in the triangle mesh, O denotes the center,
and I1, I2 are two exemplary isosceles triangles along the great circle between the center and the
vertices of the initial equilateral triangle.

To show that Bii > Bi+1i+1, we observe that Bi+1i+1 has a vertical angle V which
is the top angle of the isosceles triangle I1; I1 shares the base with another isosceles
triangle I2 that has Bii as top angle. Since isosceles I1 has longer legs than I2,
Bii > V = Bi+1i+1. Therefore, � B is the largest angle for all lower left angles in
the triangle mesh of the initial equilateral triangle area. By symmetry, � A and � C
are also the largest angles for the top and lower right angles in the triangle mesh of
the initial equilateral triangle. Based on the above angle size relations, exploring the
vertical angles relations in the triangle mesh, we can further show that � A, � B, and
� C are the largest angles in the entire triangle mesh.

In a similar way, we can also show that angle B1m and Bm1 are the smallest
angles in the entire triangle mesh.

Now, we give the first bound for both constructions.
Theorem 3.5. The maximum ratio of the distances between the vertices of any

triangle in the icosahedral grid mesh is bounded by R1,

2 sin
θ0
2

≈ 1.175570,

where θ0 = 2π/5.
Proof. Since it has been shown that the maximum side ratios appear in the

isosceles triangles at the initial vertices (Propositions 3.3 and 3.4), we can obtain the
bound by computing the limit of the ratio between the longest and shortest sides of
these isosceles triangles. Let xn and θbn denote the length and a base angle of the
isosceles triangle at grid point resolution n, where initial triangle sides are partitioned
into m sectors; let x0 and θ0 be the side length and angle size of the initial equilateral
triangle. From the spherical law of sines, we have

sinxn

/
sin

x0

m
= sin θ0

/
sin θbn.

Taking the limit of both sides as n goes to infinity, we get

R1 = lim
n→∞

xn

x0/m

= lim
n→∞

sinxn

sin(x0/m)
= lim

n→∞
sin θ0
sin θbn

=
sin θ0

sin (π − θ0)/2
= 2 sin

θ0
2
.
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γ−λα

α

e 1

e2A

C

B

D

E

e3

e 4

e5

β

γ

β−(1−λ)α

Fig. 3.3. A Voronoi cell with the greatest edge ratio. Spherical triangle �ABC is a triangle
with the greatest side ratio, and e1, e2, e4, and e5 are parts of the Voronoi cell edges.

The ratio bound R1 is an important geometric bound for the icosahedral grid. It
tells us how regular the triangle mesh is, locally, as the icosahedral grid approaches
high resolution. In addition, it also provides the absolute lower bound of the maximum
ratio of the distances between any adjacent grid points for any spherical grid based
on the refinement of an icosahedron.

Related to the ratio bound R1 are the bound for the largest angles in the triangle
mesh and the ratio bound of the longest and shortest edges of any Voronoi cell. We
have the following results.

Corollary 3.6. Let αm be the largest angle in the icosahedral triangle mesh;
then

αm ≤ 2π

5
.

Proof. For nonrecursive construction, we have shown in the proof of Proposi-
tion 3.4 that the largest angles are the angles of the initial equilateral, which is 2π/5.

For recursive construction, suppose that there is a triangle�(ABC) that has A >
2π/5; then at the nth bisection refinement, we get a triangle�(AB(n)C(n)). Assuming
that the smallest angle in this triangle is C(n), when n approaches infinity, this angle
must be less than (π − 2π/5)/2 = 3π/10. Thus, we will have limn→∞ sinA/ sinC(n)

exceeds R1, a contradiction.
Proposition 3.7. Let αm, γm be the largest and smallest angles of the triangle in

the icosahedral triangle mesh with the greatest side ratio. Let Re be the ratio bound of
the longest and shortest Voronoi cell edges within a Voronoi cell, as the grid resolution
n goes to infinity. Then

Re = lim
n→∞

cos γm
cosαm

≈ 1.90211.

Proof. With reference to Figure 3.3, we have a �(ABC), α ≥ β ≥ γ, which
contains three segments e1, e2, and e3 of the corresponding Voronoi cell edges. By
the definition of a Voronoi cell, for 0 < λ < 1.0, we have

β − (1− λ)α = γ − λα.

Solving for λ,

λ =
α− β + γ

2α
.
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Thus,

sin e1
sin e2

=
sin ((1 − λ)α)

sin (β − (1− λ)α)
=

sin ((α+ β − γ)/2)

sin ((β − α+ γ)/2)
,

sin e3
sin e2

=
sin (λα)

sin (γ − λα)
=

sin ((α− β + γ)/2)

sin ((β − α+ γ)/2)
.

Since α ≥ β ≥ γ, obviously (sin e1/ sin e2) ≥ (sin e3/ sin e2). As the grid resolution
goes to infinity, it implies e1/e2 ≥ e3/e2.

We also observe a geometric fact: as the grid point resolution n goes to infinity,
the neighboring triangles (such as �(ABC), �(ABD), and �(BCE) in Figure 3.3)
approach congruence, with adjacent triangle pairs forming quadrilaterals with either
reflection symmetry or 2-fold rotational symmetry. This implies that as the grid
resolution n goes to infinity, e4 and e5 approach e1 and e2, respectively; thus

Re = lim
n→∞

e1 + e4
e2 + e5

= lim
n→∞

e1
e2

= lim
n→∞

sin e1
sin e2

= lim
n→∞

sin ((α+ β − γ)/2)

sin ((β − α+ γ)/2)
=

cos γ

cosα
.

We obtain the bound when the ratio cos γ/ cosα reaches maximum. For nonrecursive
construction, since αm and γm are the maximum and minimum angles of the whole
triangle mesh, we have α = αm and γ = γm. For recursive construction, since
α ≤ 2π/5 (Corollary 3.6), we assume α = 2π/5−δα and γ = 3π/10−δγ, where δα and
δγ are positive real numbers, such that sinα/sin γ ≤ R1. Thus, we have δα > δγ and

cos γ

cosα
=

cos (3π/10− δγ)

cos (2π/5− δα)
≤ cos (3π/10− δα)

cos (2π/5− δα)
≤ cos (3π/10)

cos (2π/5)
.

From Theorem 3.5, we have αm = 2π/5, γm = 3π/10 as n → ∞. Evaluating Re at
those values, we obtain the bound.

3.2. The bound of the maximum ratio of the distances between adja-
cent grid points. First, we show the bound for recursive construction.

We start with a trivial claim.
Proposition 3.8. Let �(ABC) be a spherical triangle, and let �(DEF ) be the

spherical triangle whose vertices are the bisecting points of the sides a, b, and c of
�(ABC). The sides of �(DEF ) will always be longer than half of the corresponding
sides of �(ABC).

Definition 3.9. We say �(ABC) contains �(A′B′C′) if all sides of �(ABC)
are longer than or equal to those of �(A′B′C′).

Proposition 3.10. If �(ABC) contains �(A′B′C′) and the maximum ratio
between any sides of �(ABC) does not exceed

√
2, then after one bisection refine-

ment all four subtriangles of �(ABC) contain the corresponding four subtriangles of
�(A′B′C′).

Proof. Let a, b, c (a ≥ b ≥ c) and a′, b′, c′ (a′ ≥ b′ ≥ c′) denote the sides of
�(ABC) and �(A′B′C′), and let a1, b1, c1 and a′1, b

′
1, c

′
1 denote the sides of their

corresponding inner triangle (Figure 3.4). Let x̄ denote the side of the underlying plane
triangle corresponding to the side x. By definition, we have a/2 ≥ a′/2, b/2 ≥ b′/2,
and c/2 ≥ c′/2. Thus we just need to show a1 ≥ a′1, b1 ≥ b′1, and c1 ≥ c′1.

We show a1 ≥ a′1.
Since b/2 ≥ b′/2 and c/2 ≥ c′/2, we have cos b

2 ≤ cos b′
2 and cos c

2 ≤ cos c′
2 . If

� M is acute (then � N must be acute as well), then it is apparent that α′ > α implies
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(Center of the sphere)

A A’

C
C’

B’
B

b/2

b/2 b’/2

b’/2c

cb
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c/2
c’/2

c’/2c/2

a
a

1

1

1

1

’
’

1

1’

a/2
a’/2 a’/2

a/2
O

M N

α

= sin(a/2)a1

_
= sin(a’/2)

_
a’1

cos(b/2)

cos(c/2)

c/2

Fig. 3.4. Preservation of containment relation during bisection subdivision of spherical triangles
in icosahedral triangle mesh.

ā′1 > ā1 (law of sine for plane triangle), a contradiction. Thus, if � M is acute, it must
be that α ≥ α′ or a1 ≥ a′1.

Now we show that for the given constraints � M cannot be obtuse. Suppose that
� M exceeds π/2, and let b/2 = λc/2, λ ≥ 1.0; then we have

cos2
λc

2
< cos2

c

2
− sin2

a

2
= cos2

c

2
+ cos2

a

2
− 1 ≤ 2 cos2

c

2
− 1, or

cos2
c

2
− cos2

λc

2
> 1− cos2

c

2
.(3.2)

We consider the following limit and apply l’Hôpital’s rule twice:

lim
c→0

cos2 c
2 − cos2 λc

2

1− cos2 c
2

= lim
c→0

λ2 cos (λc)− cos c

cos c
= λ2 − 1.

On the other hand, this limit is strictly greater than 1 (3.2), and thus λ >
√
2, a

contradiction.
Similarly, we also have b1 ≥ b′1 and c1 ≥ c′1.
From Proposition 3.10 we have the following claim.
Proposition 3.11. Let �(ABC) and �(A′B′C′) be two spherical triangles in

the icosahedral triangle mesh created by recursive construction. If �(ABC) contains
�(A′B′C′), then all refinement triangles of �(ABC) at level i contain their corre-
sponding refinement triangles of �(A′B′C′) at level i.

Proof. Applying Proposition 3.10 to both triangles and recursively to the subtri-
angles, noting that no triangle in the triangle mesh has a side ratio greater than R1

which is smaller than
√
2, we have the claim.

From the above two claims, we can conclude that the longest triangle sides of the
entire triangle mesh at any level of refinement are the sides of the center equilateral
triangles, and the shortest triangle sides are those sides along the sides of initial
equilateral triangles. Thus, to find the maximum ratio of the distances between
adjacent grid points over the sphere, we just need to compute the relative length of
the side of the center equilateral triangle to the distance between any adjacent grid
points along the sides of the initial triangle.

To help establish the ratio upper bound at the limit of infinite bisection refine-
ments, we give the following lemma.
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x

θ

i+2

i

θ i+1

/2

θ i

A

B C

x

xi

E

i F

x i+1 D

Fig. 3.5. Recursive bisection of an equilateral triangle. Great circle AD and AF are perpen-
dicular to great circles DE and FC.

Lemma 3.12. Let xi be the arc length of the center spherical equilateral triangle
at the ith bisection refinement from the initial spherical equilateral triangle. We have
the following bound:

lim
n→∞ sin

xt+n

2

/
sin

xt

2n+1
< (cos τ)−1 exp

((
cos

τ

ς

)−1

τ2
ς2

ς2 − 1

)
,(3.3)

where t is a positive integer, ς = xt/xt+1, τ = xt/2.
Proof. Let θi and xi denote the angles and arc lengths of the equilateral triangles

at the ith refinement (Figure 3.5). Applying Napier’s rule to �(ADE) and �(AFC)
(Figure 3.5) for i ≥ 0, we have the following recursive relations:

sin
xi+1

2
= sin

θi
2
sin

xi

2
(3.4)

and

sin θi = cos
θi
2

/
cos

xi

2
,(3.5)

or

sin
θi
2

=
1

2

(
cos

xi

2

)−1

.(3.6)

It follows that

sin
xt+n

2
= 1/2n

(
n−1∏
i=0

cos
xt+i

2

)−1

sin
xt

2
, n = 1, 2, . . . ,(3.7)

sin
xt

2n+1
= 1/2n

(
n−1∏
i=0

cos
xt

2i+2

)−1

sin
xt

2
, n = 1, 2, . . . .(3.8)

Dividing (3.7) by (3.8), we have

sin
xt+n

2

/
sin

xt

2n+1
=

n−1∏
i=0

cos
xt

2i+2

/
n−1∏
i=0

cos
xt+i

2
.(3.9)
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Let ς = xt/xt+1 (2.0 − ε < ς < 2.0, where ε is a small positive number which
depends on t). Letting τ = xt/2 and εi = τ/ςi − τ/2i,

sin
xt+n

2

/
sin

xt

2n+1
<

n∏
i=1

cos
τ

2i

/(
cos τ

n∏
i=1

cos
τ

ςi

)

=
n∏

i=1

cos

(
τ

ςi
− εi

)/(
cos τ

n∏
i=1

cos
τ

ςi

)

<

n∏
i=1

(
cos

τ

ςi
+ sin

τ

ςi
sin εi

)/(
cos τ

n∏
i=1

cos
τ

ςi

)

= (cos τ)−1
n∏

i=1

(1 + ρi),

where ρi = sin τ
ςi sin εi/ cos

τ
ςi < sin2 τ

ςi / cos
τ
ςi < (cos τ

ς )
−1( τ

ςi )
2.

From a well-known relation between infinite product and infinite sum,

n∏
i=1

(1 + ρi) ≤ exp

(
n∑

i=1

ρi

)
,

we have

lim
n→∞ sin

xt+n

2

/
sin

xt

2n+1
< (cos τ)−1 exp

((
cos

τ

ς

)−1

τ2
ς2

ς2 − 1

)
.

Theorem 3.13. For an icosahedral grid created with recursive bisection, the limit
of the ratio of the longest and shortest distances between adjacent grid points exists.
Furthermore, the limit is bounded by

(
sin

xt

2

/
sin

x0/2

2t

)
(cos τ)−1 exp

((
cos

τ

ς

)−1

τ2
ς2

ς2 − 1

)
,(3.10)

where t is a positive integer and ς = xt/xt+1, τ = xt/2.
Proof. Following the recursive relations of (3.4) and (3.6), we have

sin
xn

2
= 1/2n

(
n−1∏
i=0

cos
xi

2

)−1

sin
x0

2
, n = 1, 2, . . . ,(3.11)

sin
x0

2n+1
= 1/2n

(
n−1∏
i=0

cos
x0

2i+2

)−1

sin
x0

2
, n = 1, 2, . . . .(3.12)

The limit of the ratio between (3.11) and (3.12) as n → ∞, if it exists, is the bound
we are looking for. Rewriting the limit in two parts, we have

lim
n→∞ sin

xn

2

/
sin

x0

2n+1
= sin

xt

2

/
sin

x0/2

2t
lim
n→∞ sin

xt+n

2

/
sin

xt

2n+1
.(3.13)

Using Lemma 3.12, we have the proof.
From Theorem 3.13 we can obtain an accurate value of this bound with the

following procedure. We first compute the expression sin xt

2

/
sin x0/2

2t numerically
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d d

s

l

d

...
... ... ... ...

... ...... ...... ...

d

d

d

Fig. 3.6. Longest and shortest distances between adjacent grid points for nonrecursive con-
struction. In the figure d is the distance between adjacent vertices of the plane triangle mesh, and
ds and dl are the distances between adjacent vertices of the spherical triangle mesh on the sphere,
at the center and the vertices of the initial spherical equilateral triangle, respectively.

with (3.4) and (3.6). Then we multiply it by the bound for the infinite product (the
right-hand side of inequality (3.3)) to get a bound for the limit. The bigger the t, the
tighter the bound. For all practical purposes, for t = 10, the computed bound, which
equals 1.19511377 · 1.000000805 = 1.195114732, provides more than enough accuracy.

Now, we give the same ratio bound for the icosahedral grid created by nonrecursive
construction.

Theorem 3.14. For an icosahedral grid created with nonrecursive construction,
the limit of the ratio of the longest and shortest distances between adjacent grid points
exists and is bounded by

(
cos2

x0

2
− tan2

π

6
sin2

x0

2

)−1/2 (
cos

x0

2

)−1

≈ 1.479348,

where x0 is the arc length of a side of the initial equilateral triangles, which equals
2 cos−1 (1/2 csc π

5 ).
Proof. Let m be the number of partitions along the sides of the initial equilateral

triangles. Let d be the distance between adjacent grid points on the plane (which is
a constant for a given m), and let dl and ds be the longest and shortest distances
between any adjacent grid points on the sphere (Figure 3.6).

We have the following limits:

lim
m→∞

dl

d
=
(
cos2

x0

2
− tan2

π

6
sin2

x0

2

)−1/2

(3.14)

and

lim
m→∞

ds

d
= cos

x0

2
.(3.15)

Dividing (3.14) by (3.15), we obtain the result.
Let us call this ratio bound for both constructionsR2. The numerical experiments

show that for either construction, the ratio converges to its bound rather quickly. Thus
this bound is a good measure for an icosahedral grid at most practical grid resolutions.
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With this ratio bound, we can also calculate the ratio bound for the areas of the largest
and smallest Voronoi cells. Let Ra denote this area ratio bound, n the number of the
grid points, and An,vl and An,vs the areas of the largest and smallest Voronoi cells
among all n Voronoi cells. As n approaches infinity, the obvious area ratio bound
Ra = limn→∞ An,vl/An,vs = R2

2, where An,vl and An,vs are the areas of largest and
smallest regular spherical hexagons with their apothems being half of the greatest and
smallest distances between adjacent grid points, respectively. This is due to the fact
that a regular hexagon is smaller than a regular pentagon with the same apothem.
However, we observe that the smallest spherical hexagons in the grid mesh (those
nearest to the initial vertices and surrounding the pentagons) are not regular and
have their area approach tan (π/5) + 2 sin 2(π/5) tan (π/10) when normalized by the
square of the shortest distance between any adjacent grid points. This area is actually
greater compared to that of the surrounded spherical pentagons, which approaches
1.25 · tan (π/5) when normalized by the same distance square. Thus, An,vs should be
the area of one of the pentagons at grid point resolution n. Therefore, we have the
following tighter bound:

Ra = lim
n→∞

An,vl

An,vs
=

6 tan (π/6)

5 tan (π/5)
R2

2 ≈ 0.953585367R2
2.

4. Proposed procedure for modified icosahedral grids. In this section we
propose two modified construction algorithms for icosahedral grids, one for recursive
construction and the other for nonrecursive construction. The modification to the
recursive construction improves the maximum ratio of the distances between adjacent
grid points. The modification to the nonrecursive construction improves the regularity
of hexagonal Voronoi cells.

To quantify the regularity of the Voronoi cells, we use the maximum and average
ratio of the longest and shortest length of the Voronoi cell edges to measure the local
extreme and overall regularity of the Voronoi cell mesh.

4.1. Modification to the classic recursive construction. In the classic re-
cursive construction, at any level, the sides of the triangle are bisected and the middle
points as new vertices (anchor points) are interconnected to create four subtriangles.
In this way, a subtriangle at the center of the triangle tends to be larger than the rest
of the three subtriangles. Since the construction is recursive, the grid mesh created
will have many local minimum and maximum triangles, and the center equilaterals,
relative for the grid level, will get bigger at each recursion, as has been shown in the
analysis in the previous section. To alleviate this problem of unevenness, we propose
a new algorithm to compute the anchor points. Observe that each new grid point
inside the outer triangle is actually related to three great circles (DE, GH , and JK
in Figure 4.1). Intuitively it will be better to assign the anchor point to the place
which best accommodates all three great circles. Instead of just using the bisection
point of an inner triangle side (DE), we in addition compute two trisection points of
two other great circles (GH and JK), which connect the two pairs of quad-section
points of the outer triangle. Together with the bisection point of an inner triangle
side, we now have three points to determine the location of the new grid point. We
can either compute the average of the three points or the Fermat point of the triangle
defined by these three points and use it as a new anchor point.

As a result of this modification, the ratio of the longest and the shortest distance
between adjacent grid points is improved by about 2% together with some marginal
improvements to the other parameters (Table 4.1, with three-point average algorithm).
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K
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C
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1
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1
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G H

J

Fig. 4.1. Recursive subdivision of triangle, new anchor point computation. The dotted lines
are great circles, and D,E and G,H, J,K are bisecting points at two consecutive refinement levels.
The upper right is the enlarged portion of the pointed area; the small dots Astd and Amod are the
anchor locations for standard construction and modified recursive construction, respectively.

Table 4.1

Comparison between basic and modified recursive construction grid.

Ratios of the max. and min. distances between adjacent grid points
Grid level 3 4 5 6 7 8 9
Standard 1.19105 1.19409 1.19486 1.19505 1.19510 1.195113 1.195114
Modified 1.17311 1.17496 1.17542 1.17554 1.17557 1.17558 1.17560

Max. ratios of the longest and shortest edge lengths within each Voronoi cell
Standard 1.83556 1.88500 1.89780 1.90104 1.90184 1.90205 1.90210
Modified 1.76923 1.85845 1.88917 1.89847 1.90112 1.90185 1.90204

Average ratio of the longest and shortest edge lengths of each Voronoi cell
Standard 1.42388 1.45590 1.46881 1.47370 1.47555 1.47628 1.47660
Modified 1.40393 1.41578 1.41538 1.41138 1.40786 1.40545 1.40402

Average distances between adjacent grid points (with earth radius 6371.220 km)
Standard 961.255 481.137 240.632 120.324 60.1630 30.0817 15.0408
Modified 961.082 481.042 240.584 120.300 60.1508 30.0757 15.0378

We note that this ratio is close to the ratio bound R1, the bound of the maximum ratio
of the distances between the vertices of any triangle, 2 sin (θ0/2) ≈ 1.17557. In other
words, this improved ratio is close to the absolute lower bound for any icosahedral
grids.

4.2. Modification to the nonrecursive construction. The icosahedral grid
created with nonrecursive construction (great circle construction) measures well in
terms of many geometric properties. It improves the regularity of the Voronoi cells
and has a smaller average distance between adjacent grid points compared with the
recursively constructed grid. One main disadvantage of this construction is that it
increases the ratio of the longest and shortest distances between adjacent grid points.

Compared with the grid mesh postprocessed by the spring-dynamics optimiza-
tion procedure [17], this grid has a better ratio of the longest and shortest distances
between adjacent grid points, but a worse regularity measure.

We observe that due to the uniform projection of the triangle mesh to the sphere,
the triangle mesh near the vertices of the equilateral triangle is compressed toward
these vertices. This compression helps to smooth the transition caused by the topolog-
ical change from a regular pentagon to hexagons, which is inevitable in an icosahedral-
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A

B
C

O

Fig. 4.2. Modifications to the nonrecursive construction, nudging the points near the vertices
of the initial equilateral triangle toward the center O. Shaded area is an exemplary Voronoi cell.

hexagonal grid mesh. However, this compression also causes two problems: (a) the
triangles near the center are expanded, while those near the vertices are shrunk, which
increases the ratio of the longest and shortest distances between adjacent grid points;
(b) it appears that the interior grid points near the initial vertices are overcompressed
due to this compression, causing the Voronoi cells in the area to be less regular (Fig-
ure 4.2), which affects the regularity measures of the grid.

We propose the following modification to the nonrecursive construction to alle-
viate the above problems. Before we project each internal point to the sphere, we
apply a function to its coordinate to “nudge” the points toward the center of the
plane equilateral triangle, with the amount of this nudging depending on the point
location. Let O ∈ R3 be the center of the plane equilateral triangle, A, B, C ∈ R3 be
the three vertices of the initial equilateral triangle, p ∈ R3 be an internal grid point
on the plane equilateral triangle, E ∈ R3 be the projection of p to the closest side
of the plane equilateral triangle, and V1,V2 ∈ {A,B,C} be the two vertices of the
closest side. The notation ‖.‖ denotes Euclidean norm. The “nudging” of point p is
expressed as

p = (1− w(p))p + w(p)O,(4.1)

where

w(p) = α1r1(p)/(r1(p) + α2r2(p)),

r1(p) = ‖A−O‖/‖p−O‖, r2(p) = ‖A−B‖/‖p−E‖.
E = V1 + t(V2 −V1), t = (p−V1) · (V2 −V1)/‖V2 −V1‖2.

Here α1 and α2 are specified parameters.
In the formula, w(p) � 1 is a weight function directly proportional to the actual

amount of nudging. The amount of nudging increases as the grid point p moves closer
to the vertices of the initial triangle and the distance from p to the closest side of the
initial plane triangle remains the same. This helps to improve the regularity of the
Voronoi cell in the local area and to make the transition of the grid points across the
adjacent initial triangle smoother. The amount of nudging also increases as the grid
point p gets closer to the center of the initial plane triangle from the sides. This helps
to reduce the maximum ratio of the distances between adjacent grid points, since the
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Table 4.2

Comparison between the basic and modified nonrecursive construction grids.

Ratios of the max. and min. distances between adjacent grid points
Grid level 3 4 5 6 7 8 9
Standard 1.37902 1.42861 1.45387 1.46659 1.47296 1.47616 1.47775
Modified 1.34609 1.39493 1.42073 1.43402 1.44125 1.44555 1.44892

Max.l ratios of the longest and shortest edge lengths within each Voronoi cell
Standard 1.57602 1.72604 1.81024 1.85513 1.87835 1.89016 1.89612
Modified 1.49135 1.58007 1.62062 1.64297 1.65924 1.67386 1.68728

Average ratios of the longest and shortest edge lengths of the Voronoi cell
Standard 1.17895 1.19115 1.19432 1.19468 1.19456 1.19442 1.19433
Modified 1.13852 1.13943 1.13935 1.13704 1.13533 1.13457 1.13452

Average distances between adjacent grid points (with earth radius 6371.220 km)
Standard 957.133 478.955 239.526 119.769 59.8852 29.9427 14.9714
Modified 957.282 479.073 239.591 119.800 59.8997 29.9491 14.9742

Fig. 4.3. Voronoi cells in a region near a vertex of the initial equilateral triangle. Left: Standard
recursive construction. Middle: Standard nonrecursive construction. Right: Modified nonrecursive
construction. The modified nonrecursive construction produces a more regular Voronoi cell mesh
compared with the meshes produced by the other two constructions.

nudging makes the center triangles a little smaller. Parameter α1 controls the overall
nudging amount, while α2 adjusts the penalty to the nudging amount for the grid
point p being close to the sides of the initial plane triangle.

Table 4.2 shows the maximum and average ratios of the longest and shortest
edge lengths of all Voronoi cells for basic nonrecursive construction and its modified
version. (The two parameters α1 and α2 vary from 0.025 to 0.02 and 0.08 to 0.1
roughly linearly for the icosahedral grids at grid level 3 to 9.)

The modified construction algorithm creates a more regular grid in terms of our
regularity measure, while improving the ratio of the longest and shortest distances
between adjacent grid points. The maximum ratio of the longest and shortest edge
lengths within each Voronoi cell still increases with the grid level and approaches the
theoretical bound Re, however, at a slower pace. The corresponding average ratio
which measures the general regularity of the Voronoi cells improves by more than
0.05 to about 1.13. This is a significant improvement, considering that the apparent
optimal value for this ratio is 1.0. The average distance between adjacent grid points
increases by a small amount (< 0.1%), which reflects the fact that slight adjustment
of the grid points causes internal grid points to be away from the intersection points
of the three great circles. Figure 4.3 compares the Voronoi cell meshes near a vertex
of the initial equilateral triangle from three algorithms: standard recursive, standard
nonrecursive, and modified nonrecursive constructions. (The mesh of the modified
recursive construction is very similar to that of the standard recursive construction
and visually identical.)
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Compared to widely used optimization methods for the icosahedral grid, this al-
gorithm offers several unique features. First, it is noniterative and thus much more
efficient. The algorithm adds very little extra computation to the standard construc-
tion method and creates the grid mesh in one step. Without a slowly convergent
computation to globally minimize the cost function, this new method can be used
to create a high resolution icosahedral grid dynamically. Second, the modified grid
has a smaller average distance between adjacent grid points and a maximum ratio of
distances between adjacent grid points that is comparable to those of other iterative
optimization algorithms [17, 2]. At the same time, numerical experiments (in the next
section and in [6]) have shown that the modified grid produces simulation results very
similar to those produced by the icosahedral grids opimized with iterative methods.
Third, with two parameters to tune, the new algorithm provides some flexibility in
controling the trade-off between the regularity of the local grid mesh and the unifor-
mity of the entire grid. In addition, it should be noted that neither the formula nor
the two parameters (α1, α2) have been optimized yet. For example, it would increase
the minimum distance between adjacent grid points if the grid points along each side
of the initial triangles were also nudged from two ends toward the middle of the side.
We leave the optimization of the proposed modification to future work.

5. Numerical experiments on icosahedral grid regularity. In this section,
the icosahedral grid regularity is tested with lee wave simulations obtained with a
finite-volume shallow water model (SWM). The model is discretized on the icosahe-
dral grids from four construction algorithms, namely, the standard recursive algo-
rithm, modified recursive algorithm, standard nonrecursive algorithm, and modified
nonrecursive algorithm. The regularity measures for these four grids at different res-
olutions are listed in Tables 4.1 and 4.2. The nonlinear lee wave test case is one of
the standard SWM test cases described in [18] typically used to evaluate the impact
of different algorithms on numerical weather prediction models. The SWM used in
this study, described in [6], is discretized with finite-volume operators whose stencil
points are defined on the icosahedral grid. These stencil points are indexed through a
predefined look-up table so that the model can be used to conveniently test different
icosahedral grids without changing model coding except for the predefined table. (See
[6] for details.)

In this test case, lee waves are generated by zonal (east-west) flow impinging on
an isolated mountain. The initial zonal velocity and height fields are specified as
follows:

φ = gh0 −
(
aΩu0 +

u2
0

2

)
(− cosλ cos θ sinα+ sin θ cosα)2,

u = u0(cos θ cosα+ cosλ sin θ sinα),

f = 2Ω(− cosλ cos θ sinα+ sin θ cosα),

where g is the gravitational constant of 9.8, a the earth radius in meters (6371220),
α a real number parameter, Ω the angular speed of the earth rotation (7.292 · 10−5),
and f the Coriolis parameter used in the analytical solution. The mountain profile is
given as

hs = hs0

(
1− r

R

)
,

where λ and θ denote longitude and latitude, respectively, hs0 = 2000m, R = π
9 , and

r2 = min[R2, (λ − λc)
2 + (θ − θc)

2]. The center of the mountain is chosen as λc =
π
2

and θc =
π
6 .
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(a) Standard recursive construction (b) Modified recursive construction

(c) Standard nonrecursive construction (d) Modified nonrecursive construction

Fig. 5.1. The height fields simulated using the same SWM formulated on the (a) standard re-
cursive, (b) modified recursive, (c) standard nonrecursive, and (d) modified nonrecursive icosahedral
grids. Figures (a) and (b) show, respectively, the lee wave solutions on day 6 and 9, while (c) and
(d) show the solutions on day 15. The contour interval, 50 m, is the same in all height fields.

The parameter values used in this study are α = 0, h0 = 5960 m, and u0 = 20 m/s.
With α being zero, the initial height field is a function of latitude only, and the maxi-
mum height is found along the equator. The zonal wind field is in geostrophic balance
with the height field. The meridional wind is zero initially. The lee wave solution is
obtained by integrating the finite-volume model with the zonal flow initial condi-
tion for 15 days in order to evaluate the impact of grid sensitivity on the numerical
accuracy of the lee wave solution. Figure 5.1 shows height fields simulated on the mod-
ified and standard icosahedral grids, two from basic constructions and two from their
modified versions, at the resolution of grid level 5.1 Figures 5.1(a)–5.1(d) correspond,
respectively, to the standard recursive, modified recursive, standard nonrecursive, and
modified nonrecursive constructions analyzed in the previous sections. The regularity
measures of these grids are shown in Tables 4.1 and 4.2. The regularities of non-
recursive grids are better than those of the recursive grids. At the same time, the
modified grids, either recursive or nonrecursive, have better regularity than the stan-
dard grids. Note that the grid regularity used in the lee wave simulations improves
from Figure 5.1(a) to 5.1(d).

In the lee wave test, it is required to integrate the numerical solution for 15 days,
which is the standard time period for the test case. However, numerical solutions ob-
tained with the standard and modified recursive grids blew up shortly after day 6 and

1All of the figures shown in this section are linearly interpolated from the icosahedral grid to the
regular latitude/longitude grid for display purposes.
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9 as shown in Figures 5.1(a) and 5.1(b). The height fields in Figure 5.1(a) and 5.1(b)
exhibit noises superimposed on the lee wave solution, especially at high latitudes.
These noises are caused by slight irregularities in the recursively constructed icosa-
hedral grids. These grid noises eventually dominate true solutions, and the solutions
become unstable before they complete the 15-day model integration. The standard
recursive grid with worse regularity measure than the modified recursive grid produces
more noise and thus less stable integration than the modified grid.

In contrast, the simulations with the nonrecursive grids successfully complete 15-
day integrations with the results shown in Figures 5.1(c) and 5.1(d), respectively, for
the standard and modified grids. The height field at day 15 in Figure 5.1(c) exhibits
substantial noises in high latitudes, indicating that slight grid irregularities near the
pole cause the noises in high latitudes where strong vorticities exist in the lee wave
solution. On the other hand, the numerical solution shown in Figure 5.1(d) with the
modified nonrecursive grid is free of high-latitude noises which exist in the standard
nonrecursive grid with a slightly worse grid regularity. Figure 5.1(d) shows a smooth
height field very similar to that shown in Figure 7a of [6], the same experiment with
the spring dynamics optimized grid. The height field shown in Figure 5.1(d) is also
found to be very similar to several other published results, e.g., Figure 4 in [7], Figure 6
in [15], on the grids optimized with different numerical algorithms.

Figures 5.1(a)–(d) confirm that the icosahedral grid tends to introduce noises as-
sociated with the grid imprint for sensitivity test [5]. They also convincingly demon-
strate that improved grid regularities lead to improved lee wave solutions. It is worth
pointing out that this test case is particularly sensitive to the regularity of the grid
and the test result by no means suggests that one should use only the icosahedral grid
with the best regularity. For applications extremely sensitive to the regularity of the
grid cells, the modified nonrecursive grid, for example, might be a good choice. On
the other hand, many real-world applications are not as sensitive to the grid regularity
as the test case. For these applications, the modified recursive grid could be a proper
choice because it has the best uniformity measure, which could help to maximize the
time step of the simulation.

6. Conclusion. In this paper, we derived some important geometric bounds of
the icosahedral grid. These bounds helped us understand the geometric properties of
the grid as its resolution increases. They directly defined regularity and uniformity
of the icosahedral grid. Two basic construction methods for the icosahedral grid were
investigated. In an effort to improve the geometric properties, two modifications to
the two basic constructions were proposed.

A numerical experiment was carried out to compare the modified grids to the grids
from basic constructions. The results clearly demonstrated the improved numerical
properties of the modified grids.

In summary, we have the following remarks:
(a) The two basic constructions have pros and cons of their own. According to

our analysis and the derived bounds, both constructions create grid meshes with a rel-
atively small ratio of the longest and shortest distances between adjacent grid points,
even at high grid resolution. The main disadvantage of the recursive construction is
the existence of local minimum and maximum triangles which undermines the grid’s
regularity. The main disadvantage of the nonrecursive construction is that adjacent
points along the sides of the initial 20 spherical equilateral triangles are no longer
equidistant, which in turn implies smaller grid distance near the vertices of those
equilateral triangles and a larger ratio of the adjacent grid point distances.
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(b) The icosahedral grids from both basic constructions are more uniform com-
pared to most other grid meshes (cubed-sphere grid [11, 12] and composite grid ([4],
for example) on the sphere. Moreover, modifications can be made to further improve
the geometric properties of the icosahedral grid. The proposed modification to the re-
cursive construction improves the ratio of the longest and shortest distances between
adjacent grid points. Although the improvement is relatively modest, the ratio we
have achieved approaches the lower bound for the icosahedral grid. In other words,
it is close to the optimal value. The modification to the nonrecursive construction is
effective in improving our regularity measures of the grid. The resultant grids from
both modifications show better geometric statistics and numerical properties.

(c) Compared to other grid optimization methods, the proposed direct methods
are efficient in computation and flexible in control. The proposed direct modification
to the nonrecursive construction improves grid geometric properties similarly to what
other iterative optimization schemes such as spring dynamic methods have achieved.
This method provides an interesting alternative to the iterative approaches. With two
parameters to tune (and possible further improvement to the formula), the method
allows the users of the icosahedral grid to obtain a good compromise between larger
time step and smaller truncation errors.
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